BTU Career Center Jobbörse Career Center Jobbörse Praktika, Abschlussarbeiten, Nebenjobs, Absolventenstellen
 ACHTUNG: Dieses Inserat liegt nur in englischer Sprache vor.
read
vor 1 Woche

Using artificial intelligence to classify breathing data of Long Covid patientsvon Computational Neuroscience

Basisdaten zum Inserat

Bewerbungsschluss 31.07.2025
Antrittsdatum ab sofort
Art des Inserats Masterarbeit
Arbeitsort Cottbus
geforderte Deutschkenntnisse A1: Anfänger
geforderte sonstige Sprachkenntnisse englisch
Studiengänge Künstliche Intelligenz, Künstliche Intelligenz Technologie

Stellenbeschreibung

Master thesis – Fachgebiet Computational Neuroscience
Brandenburg University of Technology Cottbus-Senftenberg

Topic: Using artificial intelligence to classify breathing data of Long Covid patients

As part of a DFG-project, we recorded breathing data from a healthy population and a population of Long Covid patients in a rebreathing task. The Long Covid patients were divided into two subgroups depending on their symptoms: one group indicated perceived breathlessness, the other group did not. You will train machine learning algorithms to recognize the distinguishing features of the control group and both Long Covid subgroups and then automatically classify new breathing data into these subgroups. Using cross-validation, you will calculate the classification accuracy of the resulting algorithm. For this project, you will need to analyse the pre-processed breathing data and corresponding labels indicating meta data from the participants, perform literature research on potential classification approaches and implement the most promising approaches. With your help, we hope to learn more about distinguishing features in the data and gain new insights on differences in breathing patterns between controls and the two patient groups.

Main topics:
-    Feature extraction and classification with machine learning 
-    Breathing data analysis
-    Programming and data analysis in Matlab
-    Literature research on classification approaches of human physiological data

For further questions, please contact Prof. Dr.-Ing. Stefan Glasauer at stefan.glasauer@b-tu.de

Fachgebiet

Logo BTU Fachgebiet Computational Neuroscience

Computational Neuroscience

Standort Universitätsplatz 1, 01968 Senftenberg, Brandenburg, Deutschland
auf Google Maps ansehen
Ansprechpartner Prof. Dr.-Ing. Stefan Glasauer
Telefon-Nr. 0355 693270
E-Mail-Adresse stefan.glasauer@b-tu.de
Profil des Fachgebiets Das Fachgebiet "Computational Neuroscience" befasst sich mit mathematischer Modellierung der Physiologie und Pathologie neuronaler Systeme und deren experimenteller Validierung. Es werden Kenntnisse der grundlegenden Funktionsweise von Ionenkanälen vermittelt, ebenso wie ein Verständnis der neuronalen Informationsverarbeitung.

Die Arbeitsgruppe beschäftigt sich mit den zugrundeliegenden Prinzipien von Hirnprozessen der Wahrnehmung und des motorischen Handelns von der neuronalen bis zur Verhaltensebene sowie deren mathematischer Modellierung.